Роль внутренней шины в стандартном контроллере

Одним из наиболее важных узлов контроллера является внутренняя шина. Хотя без микропроцессорных устройств управления и обладали большими функциональными возможностями, но, однако, они имели очень существенный недостаток, а именно, у них отсутствовала шина. Причиной этого было то, что у таких устройств управления каждый модуль был уникален, то есть решал какую-то свою задачу в автоматизации. Соединения между такими модулями представляло собой сложное сплетение проводов.

Появление микропроцессоров позволило очень сильно упростить схему соединений между модулями и сделать её регулярной и однотипной. Причиной такого упрощения явилось разделение функций между функциональными модулями и ЦПУ. За функциональными модулями остались наиболее общие функции, что позволило существенно упростить их внутреннюю структуру и унифицировать их связь с ЦПУ. К общим функциям относятся приём и передача сигналов, а также их частичная обработка. К частичной обработке сигналов можно отнести усиление, сравнение, селекцию, фильтрацию, гальваническую развязку, преобразование аналоговых сигналов в цифровой код, преобразование цифрового кода в аналоговый сигнал и так далее. Функциональные модули стали более универсальными, и этой универсальности в значительной мере способствовала унификация входных и выходных сигналов, которые для всех типов контроллеров стали иметь одинаковые диапазоны изменения. Функции полной обработки сигналов и дополнительные функции, вытекающие из индивидуальных особенностей объектов управления и контроля, были возложены на ЦПУ и прикладное программное обеспечение. Значительному упрощению соединений между модулями УСО и ЦПУ также способствовало появление двунаправленных магистральных приёмопередатчиков, выходы которых имеют третье состояние. Благодаря таким приёмопередатчикам схему соединений между модулями УСО и ЦПУ удалось превратить в полноценную шину, соединяющую параллельно одноимённые входы и выходы модулей УСО и ЦПУ. Первоначальное схемное решение, основанное на параллельном соединении выходов модулей УСО по схеме «монтажное ИЛИ», снижало нагрузочную способность шины и несколько усложняло схемное построение входных каскадов модулей УСО.

Внутренняя шина конструктивно может быть выполнена по-разному. Если контроллер имеет каркасное построение, то внутренняя шина может быть выполнена в виде соединительной печатной платы с разъёмными соединителями (розетками), в которые вставляются модули УСО и ЦПУ. При распределённой установке модулей контроллера в шкафу соединение между ними может производиться с помощью ленточного кабеля. Если контроллер выполнен в виде конструктивно законченных модулей, устанавливаемых на DIN-рейку, то шина в таком контроллере может быть реализована с помощью шинных соединителей.

Контроллеры первого поколения имели нестандартную внутреннюю шину. То есть каждый изготовитель выбирал свой тип разъёмного соединителя, и распределял по его контактам соединительные проводники различного назначения так, как ему было удобнее. И хотя размеры печатных плат модулей контроллера были стандартизованы (то есть их размеры выбирались из стандартного ряда), модули контроллеров различных изготовителей были несовместимы ни по типу соединителей, ни по привязке сигналов к контактам соединителей.

С увеличением мощности микропроцессоров изготовители контроллеров стали переходить на стандартную внутреннюю шину (контроллеры второго поколения). В качестве стандарта была выбрана укороченная шина ISA. Аббревиатура ISA это наименование стандарта, который определил тип соединителя, привязал сигналы к контактам этого соединителя, а также установил уровни передаваемых сигналов. Благодаря этому модули контроллеров разных производителей, выполненные в одном стандарте, стали взаимозаменяемыми.

Внутренняя шина контроллеров, разработанных на основе микропроцессора, функционально разбита на три части: 8-разрядная шина данных, разрядная шина адреса и шина управления. Однако шина данных осталась восьмиразрядной, хотя разрядность процессоров повысилась. Это объясняется тем, что основное время в контроллерах тратится на обработку данных, и здесь чем выше разрядность процессора, тем быстрее она осуществляется. ЦПУ опрашивает модули УСО по программно определённому циклу, длительность которого для большинства объектов управления в силу их инерционности задаётся равной одной — двум секундам. На опрос модулей тратится сравнительно мало времени (порядка нескольких миллисекунд). Переход на шестнадцати разрядную шину данных даёт выигрыш во времени несколько микросекунд, что не оправдывает затраты на аппаратные средства. Увеличение разрядности шины данных приводит к увеличению контактов на соединителях модулей, а в некоторых случаях требует дополнительного соединителя, что может привести к увеличению типоразмеров плат модулей контроллера и соединительной платы. Кроме того, увеличение разрядности шины данных приводит к увеличению количества элементов в модулях и повышает трудоёмкость изготовления изделия. Поэтому увеличение разрядности контроллеров на данном этапе развития микропроцессорной техники пока экономически нецелесообразно.

Новости

Модернизация системы измерения температурных режимов автоклава паровой вулканизации РТИ, Санкт-Петербург

09.09.17

В сентябре 2017 года компанией РИТМ выполнялись работы по замене термопар и программированию системы...

Поставка шкафов управления и сбора и передачи данных через радиостанции по беспроводному каналу, г. Сахалин

08.09.17

В сентябре 2017 года компанией РИТМ выполнялись сборочные работы партии шкафов управления и централи...

Проектирование и поставка шкафов управления КНС, суммарной производительностью 260 куб.м/час, г. Лабытнанги

14.08.17

В августе 2017 года компанией РИТМ были выполнены работы по разработка проекта, сборке и программиро...

Заказчики
Поставщики